A Bayesian networks approach for predicting protein-protein interactions from genomic data.

نویسندگان

  • Ronald Jansen
  • Haiyuan Yu
  • Dov Greenbaum
  • Yuval Kluger
  • Nevan J Krogan
  • Sambath Chung
  • Andrew Emili
  • Michael Snyder
  • Jack F Greenblatt
  • Mark Gerstein
چکیده

We have developed an approach using Bayesian networks to predict protein-protein interactions genome-wide in yeast. Our method naturally weights and combines into reliable predictions genomic features only weakly associated with interaction (e.g., messenger RNAcoexpression, coessentiality, and colocalization). In addition to de novo predictions, it can integrate often noisy, experimental interaction data sets. We observe that at given levels of sensitivity, our predictions are more accurate than the existing high-throughput experimental data sets. We validate our predictions with TAP (tandem affinity purification) tagging experiments. Our analysis, which gives a comprehensive view of yeast interactions, is available at genecensus.org/intint.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An FPT Approach for Predicting Protein Localization from Yeast Genomic Data

Accurately predicting the localization of proteins is of paramount importance in the quest to determine their respective functions within the cellular compartment. Because of the continuous and rapid progress in the fields of genomics and proteomics, more data are available now than ever before. Coincidentally, data mining methods been developed and refined in order to handle this experimental ...

متن کامل

Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization

MOTIVATION Identifying interactions between drug compounds and target proteins has a great practical importance in the drug discovery process for known diseases. Existing databases contain very few experimentally validated drug-target interactions and formulating successful computational methods for predicting interactions remains challenging. RESULTS In this study, we consider four different...

متن کامل

Comparison of Hubs in Effective Normal and Tumor Protein Interaction Networks

ABSTRACTIntroduction: Cancer is caused by genetic abnormalities, such as mutation of ontogenesis or tumor suppressor genes which alter downstream signaling pathways and protein-protein interactions. Comparison of protein interactions in cancerous and normal cells can be of help in mechanisms of disease diagnoses and treatments. Methods: We constructed protein interaction networks of cancerous a...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Construction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans

We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 302 5644  شماره 

صفحات  -

تاریخ انتشار 2003